BAT extension - definição. O que é BAT extension. Significado, conceito
Diclib.com
Dicionário ChatGPT
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:

Tradução e análise de palavras por inteligência artificial ChatGPT

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

O que (quem) é BAT extension - definição

FIELD EXTENSION WHOSE GALOIS GROUP IS ABELIAN
Cyclic extension; Abelian extensions; Abelian Extension; Cyclotomic extension; Solvable extension; Cyclic field extension; Abelian field extension; Solvable field extension

Group extension         
  • Figure 1
GROUP FOR WHICH A GIVEN GROUP IS A NORMAL SUBGROUP
Extension problem; Extension (algebra); Split extension; Extension of a group; Central extension (mathematics)
In mathematics, a group extension is a general means of describing a group in terms of a particular normal subgroup and quotient group. If Q and N are two groups, then G is an extension of Q by N if there is a short exact sequence
Extension (metaphysics)         
THE PROPERTY OF STRETCHING OUT OR TAKING UP SPACE
Physical extension
In metaphysics, extension signifies both 'stretching out' (Latin: extensio) as well as later 'taking up space', and most recently, spreading one's internal mental cognition into the external world.
Serotine         
SPECIES OF MAMMAL
Serotine; Serotine Bat; Eptesicus serotinus; Common serotine bat; Silky bat
·noun The European long-eared bat (Vesperugo serotinus).

Wikipédia

Abelian extension

In abstract algebra, an abelian extension is a Galois extension whose Galois group is abelian. When the Galois group is also cyclic, the extension is also called a cyclic extension. Going in the other direction, a Galois extension is called solvable if its Galois group is solvable, i.e., if the group can be decomposed into a series of normal extensions of an abelian group. Every finite extension of a finite field is a cyclic extension.